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SHOCK-INDUCED SPREADING OF A FILM OF

A NON-NEWTONIAN LIQUID
A. V. Dubovik and V. K. Bobolev
The system of hydrodynamic equations describing the spreading of a thin film of a non-New-
tonian liquid between two solid colliding surfaces is solved. The temperature profiles along

the film radius and thickness are found under the assumption of adiabatic compression.
The flow of an incompressible liquid of constant viscosity (a2 Newtonian liquid) between solid colliding

plates was analyzed in [1]; the shock-induced heating of such a liquid was analyzed in [2], where the ther-
mal conductivity, the temperature dependence of the viscosity, and the compressibility of the striker ma-

terial were taken into account.

The hydrodynamic equations describing the spreading of a thin film of a non-Newtonian liquid were
In many practical applications, in particular in analyzing the processes involved in stamping, it is

integrated numerically in {3] for certain types of shock. The pressure profile in a non-Newtonian film

was found in [4], with inertial forces neglected.

important to know how non- Newtonian materials move and to estimate their heating.
Below we are concerned with the case in which an incompressible, non-Newtonian liquid is subjected

to shock; we find the temperature increase, taking into account the temperature dependence of the effec-

tive viscosity. We also take into account the resulting deformation in the striker system, which greatly
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limits the pressure rise in the liquid film.
The behavior of a non-Newtonian liquid is frequently described by means of a power law [5]:
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where m and n generally depend on the pressure and temperature, m strongly and n extremely weakly.
o= met den |
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The apparent viscosity uq for a power law can be expressed in terms of n:
I O !n—l
The liquid begins to spread when the

since n < 1 for pseudoplastic materials, yq falls off with increasing rate of shear,
We assume that a thin film of a non-Newtonian liquid of thickness §; fills the gap between a rigid

!

support (anvil) and the striker, with a base radius R and length .,
freely falling weight M collides with the striker.
The system of hydrodynamic equations for the case §,/R <« 1 is written in terms of cylindrical coor-
dinates (Fig. 1) as
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The boundary conditions for (1.3) and (1.4) are

w(r, O, H=u(r, 6, H =0, p(R, H =0, v(r, 0, ) =0, v(r, §, ) =w.

(1.5)
We solve Egs. (1.3) approximately by the method of moments; we write u as the series
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which satisfies the conditions that the liquid velocity vanishes at the boundaries with the anvil and striker,
at z = 0 and z = §, respectively.

]-m(n 8) - 2fy(r, &)+ -+ -1,

Restricting the analysis to the zeroth. approximation in (1.6), and integrating continuity equation (1.4)
over z, we find
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For the upper half of the film, 1= (22/0) = 2, we find, using the boundary condition v(r, 6, t) = w,
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and thus (p = 2z/6)
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Here the subscript "1" on v means the lower half of the film, and "2" means the upper half,
If the striker system is quite rigid (k = =), we can describe the deceleration of the weight by
R
- (p>S, (p> _ 2 p(r)rdr, S =aR?
dt S
0
(1.10)
t
§ = 6, - ( wdl, w (0) = w, < 0.
o
Then Egs. (1.3) become

dw Ou du ., du , 2 Ou 1 dp |
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Substituting (1.7) and (1.8) into (1.11), after it has been multipled by nN(N =0, 1, 2,

...}, and inte~
grating it over 1 from 0 to 1, we find a system of ordinary differential equations which is equivalent, in
the limit N — «, to (1.11),
tion, we find

Evaluating the zeroth moment, corresponding to angular-momentum conserva-

- 1\ rl)n @n-+1 ora?
6_;7:“2’" 2n 41 rw| 4 orw itai__ 3(2n ) prw . (1.12)
or n g2 26 ds 3n-+2 282
We thus find the pressure profile for m = const to be
2m [ 2n--1 V |@* . +1 pw dw ,, 3(2n+ 1) pw? o
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r while the average pressure in the liquid film is

M' (py ===t (an "ll'RTY puRt dw 3 2+l pwR?
z a3\ n gen+1 86 ds 8 +2 & (1.14)
If we omit the last two terms from (1.13), corresponding to inertial
w forces, we find the solution of [4].
R
l ‘ In the two limits n = 1 (a2 Newtonian liquid, m =) andn =0 (an
ideally plastic object, m = 7(), we find from (1.14)
[~~]
3uwR? puwR® dw 9 puwtR?
f = e n=1, 1.14a
Ny <y 28 8 a5 40 & {.142)
21,R | 3 pwPR? pwR? dw
- 4o 2 PR PR 2T for =0, 1.14b
Fig. 1, Physical model and P> 38 16 5 86 ds " ‘( )
coordinate system. We note that Eq. (1.14a) was derived previously, in 1], while

Eq. (1.14b) without the inertial terms is the familiar equation of the
theory of plasticity [6] [within a small term Y, which must be introduced because of the change in boundary
condition (1.5): p(R, t) = Y].

The average pressure in the liquid film, <p>(6), cannot be found for the general case, so we turn to
two particular flow regimes — the inertial regime, for which the Reynolds number is Re = plwi6/2pg > 1,
and the viscous regime, for which Re < 1. The first regime is usually achieved in the initial stages of
high-velocity collisions, while the second is achieved in the final stages, when the liquid is thinner and
the striker has been decelerated.

In the case Re > 1 we find from (1.10) and (1.14)
2 y :;1 2 P2
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Solving this equation, we find

3@nt1)
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In the case Re < 1 we find from (1.10) and (1.14) '
dw  2mS ( 2n4 ) )"R"*llw‘\”
d  n-=3\ =n g 7
from which we find
1
1 2n / 6 on
w=w,| | ——(E—1 , &= —o—) ;
o{ v & )} { 5
_n+3/ n = Mn8¥w,Fr ,
¢~2_n(2n+1) R (1.16)
y 2m { 2n+ 1 \?jR* Yui ;—'ﬁ—l
(pr= n-3 ( &2l )

If the deformation of the striker is taken into account, the weight decelerates according to a different
law. If the film is initially thick, the striker compresses the liquid with essentially no resistance, but as
the film becomes thinner the resistance to the striker motion increases rapidly, ~§2 according to (1.15) or
~6 *1 gccording to (1.16). Accordingly, beginning at some time t;, the energy of the weight is expended
not only on compressing the liquid but also on deforming the striker itself, which is abruptly decelerated
and acquires energy which results in the subsequent recoil of the weight. These events prevent the pres-
sure increase in the liquid from becoming too large, as follows formally from (1.15) or (1.16), and they
impose a restriction on the duration of the collision itself. The time t = t; is determined from the condi-
tion that the rigidities of the striker system and the liquid film be equal [2]:
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N 0% where Ej is the Young's modulus of element i of the striker system.

To find the position of the characteristic boundary of the initial

a5 stage of the collision (in which the striker undergoes essentially no
deformation) we consider the two flow regimes in turn,
First, for Re > 1, we find from (1.15) and (1.17)
3pRw?S
AO9n - 4)—2(3n 4 2)]-
408 (G - 2p (1 7 ap L On T 20 4 2) 1.18)
0 .

-[3 (3!1 L —r(n—Dl—A(n— DB+ 21 +A)} = —=&.

Fig. 2. Temperature profile
over the thickness of the liquid For small values of A and A this equation can be simplified,

film. and an equation can be found for the film thickness:
' 3 / QnpRip 2
61 = V _——gnpgogo ’ N (1 '19)

independent of n and §,. The independence is attributable to the sharp increase in pressure and the ap-
pearance of large gradients in the liquid flow velocity only for sufficiently thin films.,

From (1.16)and (1.17) we can determine the characteristic film thickness for the case Re < 1:

n+1 n 2n—1)

R L e N S |

. , (1.20)
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If we assume that, after time t;, the compression of the film occurs with some constant force pxS,
which acts over a time tg, then we can easily find the deceleration law of the “compressible" striker and
determine the limiting thickness 6k. The quantities px and tx must depend on the energy of the weight,
the parameters of the striker system, and the properties of the liquid. In the case of a collision with the
anvil, without the liquid, these quantities are determined from [7]

/&M ™M
px:-———wo l/ ?', txzﬂ:v —-‘k~. (1.21)

Turning now to the case Re < 1, and using (1.14), we find

o2m [/ 2n -1 )"R’?“iw]"
o = px’
n + 3k n 62ni 1
whose solution yields
1
_| n 1/n {2n+1)/
w=_¢_i_6—:_ n-+3 npl e (1.22)
dt om | on--1 Rohn
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The quantity 6, is determined from (1..18)— (1.20) for various values of Re. We note that if condition (1.17)
holds st the very beginning of the collision, then we have t; = 0 and 6; = 4,

Tn the case of adiabatic heating of the liquid (with a thermal diffusivity %, = 0) the energy dissipated
in a Lagrangian particle at coordinates ry and z, is conserved, so that

DT m | Ou |t
— — , T(ry, 2 Q) =0,
D ooy | 0z (ror 20, 0)
s ar / az > ‘ (2.1)
—_— = U, _ =0,
( ot )"aszo ( ot To1Z0

r(ry 24 0)=ry, 2(rg 2y 0) =2,
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If the temperature dependence of m is specified over some T range by
m o mgl(L - 9T, >0, v>0, (2.2}

then, multiplying (2.1) by 1 + yT)Y and introducing the temperature function
O = [(1 TP — iy (v -- 1), (2.3)

we can convert this equation to

Do my | Ou

(2.4}
Dt pe, | 0z |

Equation (2.4) differs from (2.1) in that T is replaced by ® (in the case v = 0 we have T = 0),

To establish the relation between the running coordinates and the Lagrangian coordinates, we write
the system of differential equations of the vector lines as

— =22 2.5)
u v w
Using {1.7)-(1.9), we find from {(2.5)
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We see without difficulty that most of the heating of the liquid must occur during the second stage of
the collision, for which we can use the approximation that the compression is achieved by a constant force

pxS. Transforming from t to§ in (2.4), and using (1.22) and (1.7), we find the liquid temperature for 0
=z =06/2to be

O
R R TR PSR } 4t
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on pcp}?”*lé} 5 \ 8
It follows from (2.7) that the maximum temperature @y, is reached at point r = R at z = 0:
o, 23 pogg o P 2.8)
2n ey,

Denoting the Lagrange coordinates (2.6) at time t; by a subscript "1," we can evaluate the integral
in (2.7) and determine the temperature fields:
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In the case n = 1 we find from (2.9} the following equations for the temperature field and the maximum
liquid temperature:

er (Ve s [ mB—1 28—
0 =675 =) e T ey }

{2.9a)
0, =67, Inf,
These equations are the same as those found previously in [2].
In the other limit, n = 0, we find
3 21,R 2t,R
(‘7,” = e TVIHQ for e =L @ =0 f - ———n-—~ . 2.9b}
mT Ty P g, Tm T P g (
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" Fig. 3
Fig. 3. Temperature profile over the thickness of the film; the
temperature dependence of the viscosity is taken into account.

Fig. 4. Temperature profiles along the striker radius.

The liquid temperature T is determined from (2.9) simply on the basis of Eq. (2.3).

Figure 2 shows the temperature ®/®y, for the case r = R as a function of the parameter 5 = 2z/0,
for Ing = 2 and for various values of n: 0.25, 0.5, 1, and 2 (the dashed line is the asymptotic limit for n
— 0).

These curves can be described well by a power function (1 — 7R *1, which is convenient for estima-
ting the liquid temperature during the collision. From (2.3) we find
' 1
T— Ly e
Y

Accordingly, for sufficiently large ® we can use the approximation

1
vy n4-1

T 7 @ v+l T
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Figure 3 shows curves of the temperature T/Tm for the cases n = 0.25, 0.5, 1, 2, and 7 with v = 3, con-
structed from (2.10); in plotting these curves we used 8u/dz = 0 for n =1 Eq. (1.7) so that there is no
heating at the center of the film. We see from this figure that with n < v the temperature dependence of
the viscosity, (2.2), leads to an averaging of the heating over the thickness of the film. This result is not
a contradiction of the physics of the phenomenon: since there is a sharp temperature gradient in the cen-
tral part of the film in the case ®y # 0, a heat flux directed toward the center can arise. This heat flux
also facilitates an equalization of temperatures. In the case n > v the nature of the temperature profiles
does not change.

Figure 4 shows the temperature profile along the striker radius, g = r/R, for n = 0 and for various
values of n.

NOTATION
r,7 are the axes of the cylindrical coordinate system;
u, v are the radial and axial velocity components of the liquid;
o} is the pressure;
<p> is the average pressure;
n, Cp, My are the density, specific heat, and thermal diffusivity of the liquid;
I, R, S are the length, radius, and base area of the striker;
E is the Young's modulus of the striker material;
k is the rigidity of the striker system;
i is the number of elements in the striker system;
M is the mass of the falling weight;
0y is the initial thickness of the liquid film;
6 is the thickness at time t;
ok is the limiting film thickness;
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T, Tx, and ®
Tm and ®m

¢, £, B, q, andc
Re

O U R WD

is the initial striker velocity;

is the striker velocity at time t;

is the beginning of the second stage of the collision;
is the duration of this stage;

is the pressure during the collision;

is the film thickness at time ty;

is the dimensionless film thickness;

is the dimensionless radius;

is the rate of shear;

is the tangential stress;

is the yield point for pure shear;

is the yield point for uniaxial stress;

are the rheological constants of the liquid;
is the value of m at normal temperature;
is the dynamic viscosity of liquid;

is the effective viscosity of liquid;

are the liquid temperature;

are the maximum temperature;

are the dimensionless guantities;

is the Reynolds number.
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